Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices

نویسندگان

  • Fritz Haake
  • Hans-Jürgen Sommers
  • Joachim Weber
چکیده

We consider the spectral form factor of random unitary matrices as well as of Floquet matrices of kicked tops, as given by the (squared moduli of) the traces tn = TrF n with the integer “time” n = 0,±1,±2, . . .. For a typical matrix F the time dependence of the form factor |tn| 2 looks erratic; only after a local time average over a suitably large time window ∆n does a systematic time dependence become manifest. For matrices drawn from the circular unitary ensemble we prove ergodicity: In the limits of large matrix dimension and time window ∆n the local time average has vanishingly small ensemble fluctuations and may be identified with the ensemble average. By numerically diagonalizing Floquet matrices of kicked tops with a globally chaotic classical limit we find the same ergodicity. As a byproduct we find that the traces tn of random matrices from the circular ensembles behave very much like independent Gaussian random numbers. Again, Floquet matrices of chaotic tops share that universal behavior. It becomes clear that the form factor of chaotic dynamical systems can be fully faithful to random-matrix theory, not only in its locally time-averaged systematic time dependence but also in its fluctuations. pacs: 05.45.+b, 05.40.+j, 02.50.Sk Typeset using REVTEX 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Freeness and Fluctuations of Random Matrices: Ii. Unitary Random Matrices

We extend the relation between random matrices and free probability theory from the level of expectations to the level of fluctuations. We show how the concept of “second order freeness”, which was introduced in Part I, allows one to understand global fluctuations of Haar distributed unitary random matrices. In particular, independence between the unitary ensemble and another ensemble goes in t...

متن کامل

Spectral gap of doubly stochastic matrices generated from equidistributed unitary matrices

To a unitary matrix U we associate a doubly stochastic matrix M by taking the squared modulus of each element of U . To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M , we study the limiting distribution of the spectral gap of M when U is taken from the circular unitary ensemble and the dimension N of U is taken to inf...

متن کامل

Spectral Form Factor in a Random Matrix Theory

In the theory of disordered systems the spectral form factor S(τ), the Fourier transform of the two-level correlation function with respect to the difference of energies, is linear for τ < τc and constant for τ > τc. Near zero and near τc its exhibits oscillations which have been discussed in several recent papers. In the problems of mesoscopic fluctuations and quantum chaos a comparison is oft...

متن کامل

Spectral gap of doubly stochastic matrices generated from CUE

To a unitary matrix U we associate a doubly stochastic matrix M by taking the modulus squared of each element of U. To study the connection between onset of quantum chaos on graphs and ergodicity of the underlying Markov chain, specified by M, we study the limiting distribution of the spectral gap of M when U is taken from the Circular Unitary Ensemble and the dimension N of U is taken to infin...

متن کامل

Implementing Unitary 2-Designs Using Random Diagonal-unitary Matrices

Unitary 2-designs are random unitary matrices which, in contrast to their Haar-distributed counterparts, have been shown to be efficiently realized by quantum circuits. Most notably, unitary 2-designs are known to achieve decoupling, a fundamental primitive of paramount importance in quantum Shannon theory. Here we prove that unitary 2-designs can be implemented approximately using random diago...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999